2 research outputs found

    A Logical Characterization of Constant-Depth Circuits over the Reals

    Full text link
    In this paper we give an Immerman's Theorem for real-valued computation. We define circuits operating over real numbers and show that families of such circuits of polynomial size and constant depth decide exactly those sets of vectors of reals that can be defined in first-order logic on R-structures in the sense of Cucker and Meer. Our characterization holds both non-uniformily as well as for many natural uniformity conditions.Comment: 24 pages, submitted to WoLLIC 202

    Unified Foundations of Team Semantics via Semirings

    Full text link
    Semiring semantics for first-order logic provides a way to trace how facts represented by a model are used to deduce satisfaction of a formula. Team semantics is a framework for studying logics of dependence and independence in diverse contexts such as databases, quantum mechanics, and statistics by extending first-order logic with atoms that describe dependencies between variables. Combining these two, we propose a unifying approach for analysing the concepts of dependence and independence via a novel semiring team semantics, which subsumes all the previously considered variants for first-order team semantics. In particular, we study the preservation of satisfaction of dependencies and formulae between different semirings. In addition we create links to reasoning tasks such as provenance, counting, and repairs
    corecore